The Scene to which this CaptureFrame belongs.
The key of the texture to create from this CaptureFrame.
The active state of this Game Object.
A Game Object with an active state of true is processed by the Scenes UpdateList, if added to it.
An active object is one which is having its logic and internal systems updated.
Sets the Blend Mode being used by this Game Object.
This can be a const, such as Phaser.BlendModes.SCREEN, or an integer, such as 4 (for Overlay)
Under WebGL only the following Blend Modes are available:
Canvas has more available depending on browser support.
You can also create your own custom Blend Modes in WebGL.
Blend modes have different effects under Canvas and WebGL, and from browser to browser, depending on support. Blend Modes also cause a WebGL batch flush should it encounter a new blend mode. For these reasons try to be careful about the construction of your Scene and the frequency of which blend modes are used.
If this Game Object is enabled for Arcade or Matter Physics then this property will contain a reference to a Physics Body.
A bitmask that controls if this Game Object is drawn by a Camera or not.
Not usually set directly, instead call Camera.ignore, however you can
set this property directly using the Camera.id property:
A texture containing the captured frame. This is updated when the GameObject renders.
Customized WebGL render nodes of this Game Object. RenderNodes are responsible for managing the rendering process of this Game Object. A default set of RenderNodes are coded into the engine, but they will check here first to see if a custom one exists.
A Data Manager.
It allows you to store, query and get key/value paired information specific to this Game Object.
null by default. Automatically created if you use getData or setData or setDataEnabled.
The default RenderNodes for this Game Object. RenderNodes are responsible for managing the rendering process of this Game Object. These are the nodes that are used if no custom ones are set.
RenderNodes are identified by a unique key for their role.
Common role keys include:
The depth of this Game Object within the Scene. Ensure this value is only ever set to a number data-type.
The depth is also known as the 'z-index' in some environments, and allows you to change the rendering order of Game Objects, without actually moving their position in the display list.
The default depth is zero. A Game Object with a higher depth value will always render in front of one with a lower value.
Setting the depth will queue a depth sort event within the Scene.
Holds a reference to the Display List that contains this Game Object.
This is set automatically when this Game Object is added to a Scene or Layer.
You should treat this property as being read-only.
The drawing context of this CaptureFrame. This contains the WebGL framebuffer and texture data.
The Camera used for filters. You can use this to alter the perspective of filters. It is not necessary to use this camera for ordinary rendering.
This is only available if you use the enableFilters method.
ReadonlyfiltersGet the filters lists.
This is an object with internal and external properties.
Each list is a {@see Phaser.GameObjects.Components.FilterList} object.
This is only available if you use the enableFilters method.
Whether filterCamera should update every frame
to focus on the Game Object.
Disable this if you want to manually control the camera.
Whether the filters should focus on the context, rather than attempt to focus on the Game Object. This is enabled automatically when enabling filters on objects which don't have well-defined bounds.
This effectively sets the internal filters to render the same way as the external filters.
This is only used if filtersAutoFocus is enabled.
The "context" is the framebuffer to which the Game Object is rendered. This is usually the main framebuffer, but might be another framebuffer. It can even be several different framebuffers if the Game Object is rendered multiple times.
Whether the Filters component should always draw to a framebuffer, even if there are no active filters.
This Game Object will ignore all calls made to its destroy method if this flag is set to true.
This includes calls that may come from a Group, Container or the Scene itself.
While it allows you to persist a Game Object across Scenes, please understand you are entirely
responsible for managing references to and from this Game Object.
If this Game Object is enabled for input then this property will contain an InteractiveObject instance.
Not usually set directly. Instead call GameObject.setInteractive().
The maximum size of the base filter texture. Filters may use a larger texture after the base texture is rendered. The maximum texture size is 4096 in WebGL. You may set this lower to save memory or prevent resizing.
The name of this Game Object. Empty by default and never populated by Phaser, this is left for developers to use.
The parent Container of this Game Object, if it has one.
Whether any filters should be rendered on this Game Object.
This is true by default, even if there are no filters yet.
Disable this to skip filter rendering.
Use willRenderFilters() to see if there are any active filters.
The flags that are compared against RENDER_MASK to determine if this Game Object will render or not.
The bits are 0001 | 0010 | 0100 | 1000 set by the components Visible, Alpha, Transform and Texture respectively.
If those components are not used by your custom class then you can use this bitmask as you wish.
An object to store render node specific data in, to be read by the render nodes this Game Object uses.
Render nodes store their data under their own name, not their role.
A reference to the Scene to which this Game Object belongs.
Game Objects can only belong to one Scene.
You should consider this property as being read-only. You cannot move a Game Object to another Scene by simply changing it.
The current state of this Game Object.
Phaser itself will never modify this value, although plugins may do so.
Use this property to track the state of a Game Object during its lifetime. For example, it could change from a state of 'moving', to 'attacking', to 'dead'. The state value should be an integer (ideally mapped to a constant in your game code), or a string. These are recommended to keep it light and simple, with fast comparisons. If you need to store complex data about your Game Object, look at using the Data Component instead.
The Tab Index of the Game Object. Reserved for future use by plugins and the Input Manager.
A textual representation of this Game Object, i.e. sprite.
Used internally by Phaser but is available for your own custom classes to populate.
The current vertex rounding mode of this Game Object. This is used by the WebGL Renderer to determine how to round the vertex positions. It can have several values:
off - No rounding is applied.safe - Rounding is applied if the object is 'safe'.safeAuto - Rounding is applied if the object is 'safe' and the camera has roundPixels enabled.full - Rounding is always applied.fullAuto - Rounding is always applied if the camera has roundPixels enabled.A 'safe' object is one that is not rotated or scaled by any transform matrix while rendering. The effective transform is a simple translation. In such cases, rounding will affect all vertices the same way.
Using full rounding can cause vertices to wobble, because they might not be aligned to the pixel grid. Full rounding gives a janky look like PS1 games.
You can use other values if you want to create your own custom rounding modes.
The visible state of the Game Object.
An invisible Game Object will skip rendering, but will still process update logic.
Static ReadonlyRENDER_The bitmask that GameObject.renderFlags is compared against to determine if the Game Object will render or not.
This callback is invoked when this Game Object is added to a Scene.
Can be overriden by custom Game Objects, but be aware of some Game Objects that will use this, such as Sprites, to add themselves into the Update List.
You can also listen for the ADDED_TO_SCENE event from this Game Object.
Add a listener for a given event.
The event name.
The listener function.
Optionalcontext: anyThe context to invoke the listener with. Default this.
Add a render step.
The first render step in _renderSteps is run first.
It should call the next render step in the list.
This allows render steps to control the rendering flow.
The render step function to add.
Optionalindex: numberThe index in the render list to add the step to. Omit to add to the end.
Adds this Game Object to the given Display List.
If no Display List is specified, it will default to the Display List owned by the Scene to which this Game Object belongs.
A Game Object can only exist on one Display List at any given time, but may move freely between them.
If this Game Object is already on another Display List when this method is called, it will first be removed from it, before being added to the new list.
You can query which list it is on by looking at the Phaser.GameObjects.GameObject#displayList property.
If a Game Object isn't on any display list, it will not be rendered. If you just wish to temporarly
disable it from rendering, consider using the setVisible method, instead.
OptionaldisplayList: DisplayList | LayerThe Display List to add to. Defaults to the Scene Display List.
Adds this Game Object to the Update List belonging to the Scene.
When a Game Object is added to the Update List it will have its preUpdate method called
every game frame. This method is passed two parameters: delta and time.
If you wish to run your own logic within preUpdate then you should always call
super.preUpdate(time, delta) within it, or it may fail to process required operations,
such as Sprite animations.
Destroys this Game Object removing it from the Display List and Update List and severing all ties to parent resources.
Also removes itself from the Input Manager and Physics Manager if previously enabled.
Use this to remove a Game Object from your game if you don't ever plan to use it again. As long as no reference to it exists within your own code it should become free for garbage collection by the browser.
If you just want to temporarily disable an object then look at using the Game Object Pool instead of destroying it, as destroyed objects cannot be resurrected.
OptionalfromScene: booleanTrue if this Game Object is being destroyed by the Scene, false if not. Default false.
If this Game Object has previously been enabled for input, this will disable it.
An object that is disabled for input stops processing or being considered for
input events, but can be turned back on again at any time by simply calling
setInteractive() with no arguments provided.
If want to completely remove interaction from this Game Object then use removeInteractive instead.
OptionalresetCursor: booleanShould the currently active Input cursor, if any, be reset to the default cursor? Default false.
Calls each of the listeners registered for a given event.
The event name.
Additional arguments that will be passed to the event handler.
Enable this Game Object to have filters.
You need to call this method if you want to use the filterCamera
and filters properties. It sets up the necessary data structures.
You may disable filter rendering with the renderFilters property.
This is a WebGL only feature. It will return early if not available.
Return an array listing the events for which the emitter has registered listeners.
Focus the filter camera.
This sets the size and position of the filter camera to match the GameObject.
This is called automatically on render if filtersAutoFocus is enabled.
This will focus on the GameObject's raw dimensions if available. If the GameObject has no dimensions, this will focus on the context: the camera belonging to the DrawingContext used to render the GameObject. Context focus occurs during rendering, as the context is not known until then.
Manually override the focus of the filter camera.
This allows you to set the size and position of the filter camera manually.
It deactivates filtersAutoFocus when called.
The camera will set scroll to place the game object at the
given position within a rectangle of the given width and height.
For example, calling focusFiltersOverride(400, 200, 800, 600)
will focus the camera to place the object's center
100 pixels above the center of the camera (which is at 400x300).
Optionalx: numberThe x-coordinate of the focus point, relative to the filter size. Default is the center.
Optionaly: numberThe y-coordinate of the focus point, relative to the filter size. Default is the center.
Optionalwidth: numberThe width of the focus area. Default is the filter width.
Optionalheight: numberThe height of the focus area. Default is the filter height.
Retrieves the value for the given key in this Game Objects Data Manager, or undefined if it doesn't exist.
You can also access values via the values object. For example, if you had a key called gold you can do either:
sprite.getData('gold');
Or access the value directly:
sprite.data.values.gold;
You can also pass in an array of keys, in which case an array of values will be returned:
sprite.getData([ 'gold', 'armor', 'health' ]);
This approach is useful for destructuring arrays in ES6.
The key of the value to retrieve, or an array of keys.
Returns a reference to the underlying display list array that contains this Game Object, which will be either the Scene's Display List or the internal list belonging to its parent Container, if it has one.
If this Game Object is not on a display list or in a container, it will return null.
You should be very careful with this method, and understand that it returns a direct reference to the internal array used by the Display List. Mutating this array directly can cause all kinds of subtle and difficult to debug issues in your game.
Returns an array containing the display list index of either this Game Object, or if it has one, its parent Container. It then iterates up through all of the parent containers until it hits the root of the display list (which is index 0 in the returned array).
Used internally by the InputPlugin but also useful if you wish to find out the display depth of this Game Object and all of its ancestors.
Increase a value for the given key within this Game Objects Data Manager. If the key doesn't already exist in the Data Manager then it is increased from 0.
If the Game Object has not been enabled for data (via setDataEnabled) then it will be enabled
before setting the value.
If the key doesn't already exist in the Data Manager then it is created.
When the value is first set, a setdata event is emitted from this Game Object.
The key to change the value for.
Optionalamount: numberThe amount to increase the given key by. Pass a negative value to decrease the key. Default 1.
Initializes the render nodes for this Game Object.
This method is called when the Game Object is added to the Scene. It is responsible for setting up the default render nodes this Game Object will use.
The default render nodes to set for this Game Object.
Return the number of listeners listening to a given event.
The event name.
Return the listeners registered for a given event.
The event name.
Remove the listeners of a given event.
The event name.
Optionalfn: FunctionOnly remove the listeners that match this function.
Optionalcontext: anyOnly remove the listeners that have this context.
Optionalonce: booleanOnly remove one-time listeners.
Add a listener for a given event.
The event name.
The listener function.
Optionalcontext: anyThe context to invoke the listener with. Default this.
Add a one-time listener for a given event.
The event name.
The listener function.
Optionalcontext: anyThe context to invoke the listener with. Default this.
Remove all listeners, or those of the specified event.
Optionalevent: string | symbolThe event name.
This callback is invoked when this Game Object is removed from a Scene.
Can be overriden by custom Game Objects, but be aware of some Game Objects that will use this, such as Sprites, to removed themselves from the Update List.
You can also listen for the REMOVED_FROM_SCENE event from this Game Object.
Removes this Game Object from the Display List it is currently on.
A Game Object can only exist on one Display List at any given time, but may move freely removed and added back at a later stage.
You can query which list it is on by looking at the Phaser.GameObjects.GameObject#displayList property.
If a Game Object isn't on any Display List, it will not be rendered. If you just wish to temporarly
disable it from rendering, consider using the setVisible method, instead.
Removes this Game Object from the Scene's Update List.
When a Game Object is on the Update List, it will have its preUpdate method called
every game frame. Calling this method will remove it from the list, preventing this.
Removing a Game Object from the Update List will stop most internal functions working. For example, removing a Sprite from the Update List will prevent it from being able to run animations.
If this Game Object has previously been enabled for input, this will queue it for removal, causing it to no longer be interactive. The removal happens on the next game step, it is not immediate.
The Interactive Object that was assigned to this Game Object will be destroyed, removed from the Input Manager and cleared from this Game Object.
If you wish to re-enable this Game Object at a later date you will need to
re-create its InteractiveObject by calling setInteractive again.
If you wish to only temporarily stop an object from receiving input then use
disableInteractive instead, as that toggles the interactive state, where-as
this erases it completely.
If you wish to resize a hit area, don't remove and then set it as being
interactive. Instead, access the hitarea object directly and resize the shape
being used. I.e.: sprite.input.hitArea.setSize(width, height) (assuming the
shape is a Rectangle, which it is by default.)
OptionalresetCursor: booleanShould the currently active Input cursor, if any, be reset to the default cursor? Default false.
Remove the listeners of a given event.
The event name.
Optionalfn: FunctionOnly remove the listeners that match this function.
Optionalcontext: anyOnly remove the listeners that have this context.
Optionalonce: booleanOnly remove one-time listeners.
Render this object using filters.
This function's scope is not guaranteed, so it doesn't refer to this.
The WebGL Renderer instance to render with.
The Game Object being rendered.
The current drawing context.
OptionalparentMatrix: TransformMatrixThe parent matrix of the Game Object, if it has one.
OptionalrenderStep: numberThe index of this function in the Game Object's list of render processes. Used to support multiple rendering functions. Default 0.
Run a step in the render process. This is called automatically by the Render module.
In most cases, it just runs the renderWebGL function.
When _renderSteps has more than one entry,
such as when Filters are enabled for this object,
it allows those processes to defer renderWebGL
and otherwise manage the flow of rendering.
The WebGL Renderer instance to render with.
The Game Object being rendered.
The current drawing context.
OptionalparentMatrix: TransformMatrixThe parent matrix of the Game Object, if it has one.
OptionalrenderStep: numberWhich step of the rendering process should be run? Default 0.
OptionaldisplayList: GameObject[]The display list which is currently being rendered. If not provided, it will be created with the Game Object.
OptionaldisplayListIndex: numberThe index of the Game Object within the display list. Default 0.
Move this Game Object so that it appears above the given Game Object.
This means it will render immediately after the other object in the display list.
Both objects must belong to the same display list, or parent container.
This method does not change this Game Objects depth value, it simply alters its list position.
The Game Object that this Game Object will be moved to be above.
Sets the active property of this Game Object and returns this Game Object for further chaining.
A Game Object with its active property set to true will be updated by the Scenes UpdateList.
True if this Game Object should be set as active, false if not.
Set the alpha value of this CaptureFrame. This has no effect and is only present for compatibility with other Game Objects.
The alpha value (not used).
Move this Game Object so that it appears below the given Game Object.
This means it will render immediately under the other object in the display list.
Both objects must belong to the same display list, or parent container.
This method does not change this Game Objects depth value, it simply alters its list position.
The Game Object that this Game Object will be moved to be below.
Sets the Blend Mode being used by this Game Object.
This can be a const, such as Phaser.BlendModes.SCREEN, or an integer, such as 4 (for Overlay)
Under WebGL only the following Blend Modes are available:
Canvas has more available depending on browser support.
You can also create your own custom Blend Modes in WebGL.
Blend modes have different effects under Canvas and WebGL, and from browser to browser, depending on support. Blend Modes also cause a WebGL batch flush should it encounter a new blend mode. For these reasons try to be careful about the construction of your Scene and the frequency in which blend modes are used.
The BlendMode value. Either a string, a CONST or a number.
Allows you to store a key value pair within this Game Objects Data Manager.
If the Game Object has not been enabled for data (via setDataEnabled) then it will be enabled
before setting the value.
If the key doesn't already exist in the Data Manager then it is created.
sprite.setData('name', 'Red Gem Stone');
You can also pass in an object of key value pairs as the first argument:
sprite.setData({ name: 'Red Gem Stone', level: 2, owner: 'Link', gold: 50 });
To get a value back again you can call getData:
sprite.getData('gold');
Or you can access the value directly via the values property, where it works like any other variable:
sprite.data.values.gold += 50;
When the value is first set, a setdata event is emitted from this Game Object.
If the key already exists, a changedata event is emitted instead, along an event named after the key.
For example, if you updated an existing key called PlayerLives then it would emit the event changedata-PlayerLives.
These events will be emitted regardless if you use this method to set the value, or the direct values setter.
Please note that the data keys are case-sensitive and must be valid JavaScript Object property strings.
This means the keys gold and Gold are treated as two unique values within the Data Manager.
The key to set the value for. Or an object of key value pairs. If an object the data argument is ignored.
Optionaldata: anyThe value to set for the given key. If an object is provided as the key this argument is ignored.
Adds a Data Manager component to this Game Object.
The depth of this Game Object within the Scene.
The depth is also known as the 'z-index' in some environments, and allows you to change the rendering order of Game Objects, without actually moving their position in the display list.
The default depth is zero. A Game Object with a higher depth value will always render in front of one with a lower value.
Setting the depth will queue a depth sort event within the Scene.
The depth of this Game Object. Ensure this value is only ever a number data-type.
Set whether filters should be updated every frame.
Sets the filtersAutoFocus property.
Whether filters should be updated every frame.
Set whether the filters should focus on the context.
Sets the filtersFocusContext property.
Whether the filters should focus on the context.
Set whether the filters should always draw to a framebuffer.
Sets the filtersForceComposite property.
Whether the object should always draw to a framebuffer, even if there are no active filters.
Set the base size of the filter camera. This is the size of the texture that internal filters will be drawn to. External filters are drawn to the size of the context (usually the game canvas).
This is typically the size of the GameObject.
It is set automatically when the Game Object is rendered
and filtersAutoFocus is enabled.
Turn off auto focus to set it manually.
Technically, larger framebuffers may be used to provide padding. This is the size of the final framebuffer used for "internal" rendering.
Base width of the filter texture.
Base height of the filter texture.
Pass this Game Object to the Input Manager to enable it for Input.
Input works by using hit areas, these are nearly always geometric shapes, such as rectangles or circles, that act as the hit area for the Game Object. However, you can provide your own hit area shape and callback, should you wish to handle some more advanced input detection.
If no arguments are provided it will try and create a rectangle hit area based on the texture frame the Game Object is using. If this isn't a texture-bound object, such as a Graphics or BitmapText object, this will fail, and you'll need to provide a specific shape for it to use.
You can also provide an Input Configuration Object as the only argument to this method.
OptionalhitArea: anyEither an input configuration object, or a geometric shape that defines the hit area for the Game Object. If not given it will try to create a Rectangle based on the texture frame.
Optionalcallback: HitAreaCallbackThe callback that determines if the pointer is within the Hit Area shape or not. If you provide a shape you must also provide a callback.
OptionaldropZone: booleanShould this Game Object be treated as a drop zone target? Default false.
Sets the name property of this Game Object and returns this Game Object for further chaining.
The name property is not populated by Phaser and is presented for your own use.
The name to be given to this Game Object.
Set whether the filters should be rendered.
Sets the renderFilters property.
Whether the filters should be rendered.
Adds an entry to the renderNodeData object of this game object.
If key is not set, it is created. If it is set, it is updated.
If value is undefined and key exists, the key is removed.
The render node to set the data for. If a string, it should be the name of the render node.
The key of the property to set.
The value to set the property to.
Sets the RenderNode for a given role.
Also sets the relevant render node data object, if specified.
If the node cannot be set, no changes are made.
The key of the role to set the render node for.
The render node to set on this Game Object. Either a string, or a RenderNode instance. If null, the render node is removed, along with its data.
OptionalrenderNodeData: objectAn object to store render node specific data in, to be read by the render nodes this Game Object uses.
OptionalcopyData: booleanShould the data be copied from the renderNodeData object? Default false.
Set the scroll factor of this CaptureFrame. This has no effect and is only present for compatibility with other Game Objects.
The horizontal scroll factor (not used).
The vertical scroll factor (not used).
Sets the current state of this Game Object.
Phaser itself will never modify the State of a Game Object, although plugins may do so.
For example, a Game Object could change from a state of 'moving', to 'attacking', to 'dead'. The state value should typically be an integer (ideally mapped to a constant in your game code), but could also be a string. It is recommended to keep it light and simple. If you need to store complex data about your Game Object, look at using the Data Component instead.
The state of the Game Object.
Sets this Game Object to the back of the display list, or the back of its parent container.
Being at the back means it will render below everything else.
This method does not change this Game Objects depth value, it simply alters its list position.
Sets this Game Object to be at the top of the display list, or the top of its parent container.
Being at the top means it will render on-top of everything else.
This method does not change this Game Objects depth value, it simply alters its list position.
Sets the vertex round mode of this Game Object. This is used by the WebGL Renderer to determine how to round the vertex positions.
The vertex round mode to set. Can be 'off', 'safe', 'safeAuto', 'full' or 'fullAuto'.
Sets the visibility of this Game Object.
An invisible Game Object will skip rendering, but will still process update logic.
The visible state of the Game Object.
Removes all listeners.
Toggle a boolean value for the given key within this Game Objects Data Manager. If the key doesn't already exist in the Data Manager then it is toggled from false.
If the Game Object has not been enabled for data (via setDataEnabled) then it will be enabled
before setting the value.
If the key doesn't already exist in the Data Manager then it is created.
When the value is first set, a setdata event is emitted from this Game Object.
The key to toggle the value for.
Returns a JSON representation of the Game Object.
To be overridden by custom GameObjects. Allows base objects to be used in a Pool.
args
Whether this Game Object will render filters.
This is true if it has active filters,
and if the renderFilters property is also true.
Checks if this Game Object should round its vertices,
based on the given Camera and the vertexRoundMode of this Game Object.
This is used by the WebGL Renderer to determine how to round the vertex positions.
You can override this method in your own custom Game Object classes to provide custom logic for vertex rounding.
A CaptureFrame is a special type of GameObject that allows you to capture the current state of the render. For example, if you place a CaptureFrame between two other objects, it will capture the first object to a texture, but not the second. This is useful for full-scene post-processing prior to render completion, such as a layer of water.
This is a WebGL only feature and is not available in Canvas mode.
You must activate the
forceCompositeproperty of the Camera, or otherwise use this object within a framebuffer, to use this feature. Examples of framebuffer situations include Filters, DynamicTexture, and a camera with alpha between 0 and 1.This object does not render anything. It simply captures a texture from the current framebuffer at the moment it 'renders'. If you add filters to this object, it will capture the clear, temporary framebuffer used for the filter, not the main framebuffer. If you add filters to a Container that contains this object, it will capture only objects within that Container. If you set
visibletofalse, it will just stop capturing.