phaser - v4.0.0-rc.4
    Preparing search index...

    A Rope Game Object.

    The Rope object is WebGL only and does not have a Canvas counterpart.

    A Rope is a special kind of Game Object that has a texture is stretched along its entire length.

    Unlike a Sprite, it isn't restricted to using just a quad and can have as many vertices as you define when creating it. The vertices can be arranged in a horizontal or vertical strip and have their own color and alpha values as well.

    A Ropes origin is always 0.5 x 0.5 and cannot be changed.

    This object does not support trimmed textures from Texture Packer. Trimming may interfere with the vertex arrangement.

    Hierarchy (View Summary)

    Implements

    Index

    Constructors

    Properties

    Methods

    Constructors

    • Parameters

      • scene: Scene

        The Scene to which this Game Object belongs. A Game Object can only belong to one Scene at a time.

      • Optionalx: number

        The horizontal position of this Game Object in the world. Default 0.

      • Optionaly: number

        The vertical position of this Game Object in the world. Default 0.

      • Optionaltexture: string

        The key of the Texture this Game Object will use to render with, as stored in the Texture Manager. If not given, __DEFAULT is used.

      • Optionalframe: string | number

        An optional frame from the Texture this Game Object is rendering with.

      • Optionalpoints: number | Vector2Like[]

        An array containing the vertices data for this Rope, or a number that indicates how many segments to split the texture frame into. If none is provided a simple quad is created. See setPoints to set this post-creation. Default 2.

      • Optionalhorizontal: boolean

        Should the vertices of this Rope be aligned horizontally (true), or vertically (false)? Default true.

      • Optionalcolors: number[]

        An optional array containing the color data for this Rope. You should provide one color value per pair of vertices.

      • Optionalalphas: number[]

        An optional array containing the alpha data for this Rope. You should provide one alpha value per pair of vertices.

      Returns GameObjects.Rope

    Properties

    active: boolean

    The active state of this Game Object. A Game Object with an active state of true is processed by the Scenes UpdateList, if added to it. An active object is one which is having its logic and internal systems updated.

    alpha: number

    The alpha value of the Game Object.

    This is a global value, impacting the entire Game Object, not just a region of it.

    alphas: Float32Array

    An array containing the alpha data for this Rope.

    Alphas should be given as float values, such as 0.5. You should provide two alpha values for every point in the Rope, one for the top and one for the bottom of each quad.

    You can modify the contents of this array directly in real-time, however, should you need to change the size of the array, then you should use the setAlphas method instead.

    angle: number

    The angle of this Game Object as expressed in degrees.

    Phaser uses a right-hand clockwise rotation system, where 0 is right, 90 is down, 180/-180 is left and -90 is up.

    If you prefer to work in radians, see the rotation property instead.

    The Animation State of this Rope.

    blendMode: string | number | BlendModes

    Sets the Blend Mode being used by this Game Object.

    This can be a const, such as Phaser.BlendModes.SCREEN, or an integer, such as 4 (for Overlay)

    Under WebGL only the following Blend Modes are available:

    • NORMAL
    • ADD
    • MULTIPLY
    • SCREEN
    • ERASE

    Canvas has more available depending on browser support.

    You can also create your own custom Blend Modes in WebGL.

    Blend modes have different effects under Canvas and WebGL, and from browser to browser, depending on support. Blend Modes also cause a WebGL batch flush should it encounter a new blend mode. For these reasons try to be careful about the construction of your Scene and the frequency of which blend modes are used.

    If this Game Object is enabled for Arcade or Matter Physics then this property will contain a reference to a Physics Body.

    cameraFilter: number

    A bitmask that controls if this Game Object is drawn by a Camera or not. Not usually set directly, instead call Camera.ignore, however you can set this property directly using the Camera.id property:

    colors: Uint32Array

    An array containing the color data for this Rope.

    Colors should be given as numeric RGB values, such as 0xff0000. You should provide two color values for every point in the Rope, one for the top and one for the bottom of each quad.

    You can modify the contents of this array directly in real-time, however, should you need to change the size of the array, then you should use the setColors method instead.

    customRenderNodes: object

    Customized WebGL render nodes of this Game Object. RenderNodes are responsible for managing the rendering process of this Game Object. A default set of RenderNodes are coded into the engine, but they will check here first to see if a custom one exists.

    A Data Manager. It allows you to store, query and get key/value paired information specific to this Game Object. null by default. Automatically created if you use getData or setData or setDataEnabled.

    debugCallback: Function

    You can optionally choose to render the vertices of this Rope to a Graphics instance.

    Achieve this by setting the debugCallback and the debugGraphic properties.

    You can do this in a single call via the Rope.setDebug method, which will use the built-in debug function. You can also set it to your own callback. The callback will be invoked once per render and sent the following parameters:

    debugCallback(src, meshLength, verts)

    src is the Rope instance being debugged. meshLength is the number of mesh vertices in total. verts is an array of the translated vertex coordinates.

    To disable rendering, set this property back to null.

    debugGraphic: GameObjects.Graphics

    The Graphics instance that the debug vertices will be drawn to, if setDebug has been called.

    defaultRenderNodes: object

    The default RenderNodes for this Game Object. RenderNodes are responsible for managing the rendering process of this Game Object. These are the nodes that are used if no custom ones are set.

    RenderNodes are identified by a unique key for their role.

    Common role keys include:

    • 'Submitter': responsible for running other node roles for each element.
    • 'Transformer': responsible for providing vertex coordinates for an element.
    • 'Texturer': responsible for handling textures for an element.
    depth: number

    The depth of this Game Object within the Scene. Ensure this value is only ever set to a number data-type.

    The depth is also known as the 'z-index' in some environments, and allows you to change the rendering order of Game Objects, without actually moving their position in the display list.

    The default depth is zero. A Game Object with a higher depth value will always render in front of one with a lower value.

    Setting the depth will queue a depth sort event within the Scene.

    dirty: boolean

    If the Rope is marked as dirty it will automatically recalculate its vertices the next time it renders. You can also force this by calling updateVertices.

    displayHeight: number

    The displayed height of this Game Object.

    This value takes into account the scale factor.

    Setting this value will adjust the Game Object's scale property.

    displayList: DisplayList | Layer

    Holds a reference to the Display List that contains this Game Object.

    This is set automatically when this Game Object is added to a Scene or Layer.

    You should treat this property as being read-only.

    displayWidth: number

    The displayed width of this Game Object.

    This value takes into account the scale factor.

    Setting this value will adjust the Game Object's scale property.

    filterCamera: Cameras.Scene2D.Camera

    The Camera used for filters. You can use this to alter the perspective of filters. It is not necessary to use this camera for ordinary rendering.

    This is only available if you use the enableFilters method.

    Get the filters lists. This is an object with internal and external properties. Each list is a {@see Phaser.GameObjects.Components.FilterList} object.

    This is only available if you use the enableFilters method.

    filtersAutoFocus: boolean

    Whether filterCamera should update every frame to focus on the Game Object. Disable this if you want to manually control the camera.

    filtersFocusContext: boolean

    Whether the filters should focus on the context, rather than attempt to focus on the Game Object. This is enabled automatically when enabling filters on objects which don't have well-defined bounds.

    This effectively sets the internal filters to render the same way as the external filters.

    This is only used if filtersAutoFocus is enabled.

    The "context" is the framebuffer to which the Game Object is rendered. This is usually the main framebuffer, but might be another framebuffer. It can even be several different framebuffers if the Game Object is rendered multiple times.

    filtersForceComposite: boolean

    Whether the Filters component should always draw to a framebuffer, even if there are no active filters.

    flipX: boolean

    The horizontally flipped state of the Game Object.

    A Game Object that is flipped horizontally will render inversed on the horizontal axis. Flipping always takes place from the middle of the texture and does not impact the scale value. If this Game Object has a physics body, it will not change the body. This is a rendering toggle only.

    flipY: boolean

    The vertically flipped state of the Game Object.

    A Game Object that is flipped vertically will render inversed on the vertical axis (i.e. upside down) Flipping always takes place from the middle of the texture and does not impact the scale value. If this Game Object has a physics body, it will not change the body. This is a rendering toggle only.

    frame: Frame

    The Texture Frame this Game Object is using to render with.

    hasTransformComponent: boolean

    A property indicating that a Game Object has this component.

    height: number

    The native (un-scaled) height of this Game Object.

    Changing this value will not change the size that the Game Object is rendered in-game. For that you need to either set the scale of the Game Object (setScale) or use the displayHeight property.

    horizontal: boolean

    Are the Rope vertices aligned horizontally, in a strip, or vertically, in a column?

    This property is set during instantiation and cannot be changed directly. See the setVertical and setHorizontal methods.

    ignoreDestroy: boolean

    This Game Object will ignore all calls made to its destroy method if this flag is set to true. This includes calls that may come from a Group, Container or the Scene itself. While it allows you to persist a Game Object across Scenes, please understand you are entirely responsible for managing references to and from this Game Object.

    If this Game Object is enabled for input then this property will contain an InteractiveObject instance. Not usually set directly. Instead call GameObject.setInteractive().

    The Mask this Game Object is using during render.

    maxFilterSize: Math.Vector2

    The maximum size of the base filter texture. Filters may use a larger texture after the base texture is rendered. The maximum texture size is 4096 in WebGL. You may set this lower to save memory or prevent resizing.

    name: string

    The name of this Game Object. Empty by default and never populated by Phaser, this is left for developers to use.

    parentContainer: GameObjects.Container

    The parent Container of this Game Object, if it has one.

    points: Vector2Like[]

    An array containing the points data for this Rope.

    Each point should be given as a Vector2Like object (i.e. a Vector2 or object with public x/y properties).

    The point coordinates are given in local space, where 0 x 0 is the start of the Rope strip.

    You can modify the contents of this array directly in real-time to create interesting effects. If you do so, be sure to call setDirty after modifying this array, so that the vertices data is updated before the next render. Alternatively, you can use the setPoints method instead.

    Should you need to change the size of this array, then you should always use the setPoints method.

    renderFilters: boolean

    Whether any filters should be rendered on this Game Object. This is true by default, even if there are no filters yet. Disable this to skip filter rendering.

    Use willRenderFilters() to see if there are any active filters.

    renderFlags: number

    The flags that are compared against RENDER_MASK to determine if this Game Object will render or not. The bits are 0001 | 0010 | 0100 | 1000 set by the components Visible, Alpha, Transform and Texture respectively. If those components are not used by your custom class then you can use this bitmask as you wish.

    renderNodeData: object

    An object to store render node specific data in, to be read by the render nodes this Game Object uses.

    Render nodes store their data under their own name, not their role.

    rotation: number

    The angle of this Game Object in radians.

    Phaser uses a right-hand clockwise rotation system, where 0 is right, PI/2 is down, +-PI is left and -PI/2 is up.

    If you prefer to work in degrees, see the angle property instead.

    scale: number

    This is a special setter that allows you to set both the horizontal and vertical scale of this Game Object to the same value, at the same time. When reading this value the result returned is (scaleX + scaleY) / 2.

    Use of this property implies you wish the horizontal and vertical scales to be equal to each other. If this isn't the case, use the scaleX or scaleY properties instead.

    scaleX: number

    The horizontal scale of this Game Object.

    scaleY: number

    The vertical scale of this Game Object.

    scene: Scene

    A reference to the Scene to which this Game Object belongs.

    Game Objects can only belong to one Scene.

    You should consider this property as being read-only. You cannot move a Game Object to another Scene by simply changing it.

    scrollFactorX: number

    The horizontal scroll factor of this Game Object.

    The scroll factor controls the influence of the movement of a Camera upon this Game Object.

    When a camera scrolls it will change the location at which this Game Object is rendered on-screen. It does not change the Game Objects actual position values.

    A value of 1 means it will move exactly in sync with a camera. A value of 0 means it will not move at all, even if the camera moves. Other values control the degree to which the camera movement is mapped to this Game Object.

    Please be aware that scroll factor values other than 1 are not taken in to consideration when calculating physics collisions. Bodies always collide based on their world position, but changing the scroll factor is a visual adjustment to where the textures are rendered, which can offset them from physics bodies if not accounted for in your code.

    scrollFactorY: number

    The vertical scroll factor of this Game Object.

    The scroll factor controls the influence of the movement of a Camera upon this Game Object.

    When a camera scrolls it will change the location at which this Game Object is rendered on-screen. It does not change the Game Objects actual position values.

    A value of 1 means it will move exactly in sync with a camera. A value of 0 means it will not move at all, even if the camera moves. Other values control the degree to which the camera movement is mapped to this Game Object.

    Please be aware that scroll factor values other than 1 are not taken in to consideration when calculating physics collisions. Bodies always collide based on their world position, but changing the scroll factor is a visual adjustment to where the textures are rendered, which can offset them from physics bodies if not accounted for in your code.

    state: string | number

    The current state of this Game Object.

    Phaser itself will never modify this value, although plugins may do so.

    Use this property to track the state of a Game Object during its lifetime. For example, it could change from a state of 'moving', to 'attacking', to 'dead'. The state value should be an integer (ideally mapped to a constant in your game code), or a string. These are recommended to keep it light and simple, with fast comparisons. If you need to store complex data about your Game Object, look at using the Data Component instead.

    tabIndex: number

    The Tab Index of the Game Object. Reserved for future use by plugins and the Input Manager.

    The Texture this Game Object is using to render with.

    tintFill: boolean

    The tint fill mode.

    false = An additive tint (the default), where vertices colors are blended with the texture. true = A fill tint, where the vertices colors replace the texture, but respects texture alpha.

    type: string

    A textual representation of this Game Object, i.e. sprite. Used internally by Phaser but is available for your own custom classes to populate.

    uv: Float32Array

    An array containing the uv data for this Rope.

    This data is calculated automatically in the setPoints method, based on the points provided.

    vertexRoundMode: string

    The current vertex rounding mode of this Game Object. This is used by the WebGL Renderer to determine how to round the vertex positions. It can have several values:

    • off - No rounding is applied.
    • safe - Rounding is applied if the object is 'safe'.
    • safeAuto - Rounding is applied if the object is 'safe' and the camera has roundPixels enabled.
    • full - Rounding is always applied.
    • fullAuto - Rounding is always applied if the camera has roundPixels enabled.

    A 'safe' object is one that is not rotated or scaled by any transform matrix while rendering. The effective transform is a simple translation. In such cases, rounding will affect all vertices the same way.

    Using full rounding can cause vertices to wobble, because they might not be aligned to the pixel grid. Full rounding gives a janky look like PS1 games.

    You can use other values if you want to create your own custom rounding modes.

    vertices: Float32Array

    An array containing the vertices data for this Rope.

    This data is calculated automatically in the updateVertices method, based on the points provided.

    visible: boolean

    The visible state of the Game Object.

    An invisible Game Object will skip rendering, but will still process update logic.

    w: number

    The w position of this Game Object.

    width: number

    The native (un-scaled) width of this Game Object.

    Changing this value will not change the size that the Game Object is rendered in-game. For that you need to either set the scale of the Game Object (setScale) or use the displayWidth property.

    x: number

    The x position of this Game Object.

    y: number

    The y position of this Game Object.

    z: number

    The z position of this Game Object.

    Note: The z position does not control the rendering order of 2D Game Objects. Use Phaser.GameObjects.Components.Depth#depth instead.

    RENDER_MASK: number

    The bitmask that GameObject.renderFlags is compared against to determine if the Game Object will render or not.

    Methods

    • This callback is invoked when this Game Object is added to a Scene.

      Can be overriden by custom Game Objects, but be aware of some Game Objects that will use this, such as Sprites, to add themselves into the Update List.

      You can also listen for the ADDED_TO_SCENE event from this Game Object.

      Returns void

    • Add a listener for a given event.

      Parameters

      • event: string | symbol

        The event name.

      • fn: Function

        The listener function.

      • Optionalcontext: any

        The context to invoke the listener with. Default this.

      Returns this

    • Add a render step.

      The first render step in _renderSteps is run first. It should call the next render step in the list. This allows render steps to control the rendering flow.

      Parameters

      • fn: RenderWebGLStep

        The render step function to add.

      • Optionalindex: number

        The index in the render list to add the step to. Omit to add to the end.

      Returns this

    • Adds this Game Object to the given Display List.

      If no Display List is specified, it will default to the Display List owned by the Scene to which this Game Object belongs.

      A Game Object can only exist on one Display List at any given time, but may move freely between them.

      If this Game Object is already on another Display List when this method is called, it will first be removed from it, before being added to the new list.

      You can query which list it is on by looking at the Phaser.GameObjects.GameObject#displayList property.

      If a Game Object isn't on any display list, it will not be rendered. If you just wish to temporarly disable it from rendering, consider using the setVisible method, instead.

      Parameters

      • OptionaldisplayList: DisplayList | Layer

        The Display List to add to. Defaults to the Scene Display List.

      Returns this

    • Adds this Game Object to the Update List belonging to the Scene.

      When a Game Object is added to the Update List it will have its preUpdate method called every game frame. This method is passed two parameters: delta and time.

      If you wish to run your own logic within preUpdate then you should always call super.preUpdate(time, delta) within it, or it may fail to process required operations, such as Sprite animations.

      Returns this

    • Clears all alpha values associated with this Game Object.

      Immediately sets the alpha levels back to 1 (fully opaque).

      Returns this

    • Destroys this Game Object removing it from the Display List and Update List and severing all ties to parent resources.

      Also removes itself from the Input Manager and Physics Manager if previously enabled.

      Use this to remove a Game Object from your game if you don't ever plan to use it again. As long as no reference to it exists within your own code it should become free for garbage collection by the browser.

      If you just want to temporarily disable an object then look at using the Game Object Pool instead of destroying it, as destroyed objects cannot be resurrected.

      Parameters

      • OptionalfromScene: boolean

        True if this Game Object is being destroyed by the Scene, false if not. Default false.

      Returns void

    • If this Game Object has previously been enabled for input, this will disable it.

      An object that is disabled for input stops processing or being considered for input events, but can be turned back on again at any time by simply calling setInteractive() with no arguments provided.

      If want to completely remove interaction from this Game Object then use removeInteractive instead.

      Parameters

      • OptionalresetCursor: boolean

        Should the currently active Input cursor, if any, be reset to the default cursor? Default false.

      Returns this

    • Calls each of the listeners registered for a given event.

      Parameters

      • event: string | symbol

        The event name.

      • ...args: any[]

        Additional arguments that will be passed to the event handler.

      Returns boolean

    • Enable this Game Object to have filters.

      You need to call this method if you want to use the filterCamera and filters properties. It sets up the necessary data structures. You may disable filter rendering with the renderFilters property.

      This is a WebGL only feature. It will return early if not available.

      Returns this

    • Return an array listing the events for which the emitter has registered listeners.

      Returns (string | symbol)[]

    • Focus the filter camera. This sets the size and position of the filter camera to match the GameObject. This is called automatically on render if filtersAutoFocus is enabled.

      This will focus on the GameObject's raw dimensions if available. If the GameObject has no dimensions, this will focus on the context: the camera belonging to the DrawingContext used to render the GameObject. Context focus occurs during rendering, as the context is not known until then.

      Returns this

    • Manually override the focus of the filter camera. This allows you to set the size and position of the filter camera manually. It deactivates filtersAutoFocus when called.

      The camera will set scroll to place the game object at the given position within a rectangle of the given width and height. For example, calling focusFiltersOverride(400, 200, 800, 600) will focus the camera to place the object's center 100 pixels above the center of the camera (which is at 400x300).

      Parameters

      • Optionalx: number

        The x-coordinate of the focus point, relative to the filter size. Default is the center.

      • Optionaly: number

        The y-coordinate of the focus point, relative to the filter size. Default is the center.

      • Optionalwidth: number

        The width of the focus area. Default is the filter width.

      • Optionalheight: number

        The height of the focus area. Default is the filter height.

      Returns this

    • Retrieves the value for the given key in this Game Objects Data Manager, or undefined if it doesn't exist.

      You can also access values via the values object. For example, if you had a key called gold you can do either:

      sprite.getData('gold');
      

      Or access the value directly:

      sprite.data.values.gold;
      

      You can also pass in an array of keys, in which case an array of values will be returned:

      sprite.getData([ 'gold', 'armor', 'health' ]);
      

      This approach is useful for destructuring arrays in ES6.

      Parameters

      • key: string | string[]

        The key of the value to retrieve, or an array of keys.

      Returns any

    • Returns a reference to the underlying display list array that contains this Game Object, which will be either the Scene's Display List or the internal list belonging to its parent Container, if it has one.

      If this Game Object is not on a display list or in a container, it will return null.

      You should be very careful with this method, and understand that it returns a direct reference to the internal array used by the Display List. Mutating this array directly can cause all kinds of subtle and difficult to debug issues in your game.

      Returns GameObject[]

    • Returns an array containing the display list index of either this Game Object, or if it has one, its parent Container. It then iterates up through all of the parent containers until it hits the root of the display list (which is index 0 in the returned array).

      Used internally by the InputPlugin but also useful if you wish to find out the display depth of this Game Object and all of its ancestors.

      Returns number[]

    • Takes the given x and y coordinates and converts them into local space for this Game Object, taking into account parent and local transforms, and the Display Origin.

      The returned Vector2 contains the translated point in its properties.

      A Camera needs to be provided in order to handle modified scroll factors. If no camera is specified, it will use the main camera from the Scene to which this Game Object belongs.

      Parameters

      • x: number

        The x position to translate.

      • y: number

        The y position to translate.

      • Optionalpoint: Math.Vector2

        A Vector2, or point-like object, to store the results in.

      • Optionalcamera: Cameras.Scene2D.Camera

        The Camera which is being tested against. If not given will use the Scene default camera.

      Returns Math.Vector2

    • Gets the sum total rotation of all of this Game Objects parent Containers.

      The returned value is in radians and will be zero if this Game Object has no parent container.

      Returns number

    • Increase a value for the given key within this Game Objects Data Manager. If the key doesn't already exist in the Data Manager then it is increased from 0.

      If the Game Object has not been enabled for data (via setDataEnabled) then it will be enabled before setting the value.

      If the key doesn't already exist in the Data Manager then it is created.

      When the value is first set, a setdata event is emitted from this Game Object.

      Parameters

      • key: string

        The key to change the value for.

      • Optionalamount: number

        The amount to increase the given key by. Pass a negative value to decrease the key. Default 1.

      Returns this

    • Initializes the render nodes for this Game Object.

      This method is called when the Game Object is added to the Scene. It is responsible for setting up the default render nodes this Game Object will use.

      Parameters

      • defaultNodes: Map<string, string>

        The default render nodes to set for this Game Object.

      Returns void

    • Return the number of listeners listening to a given event.

      Parameters

      • event: string | symbol

        The event name.

      Returns number

    • Return the listeners registered for a given event.

      Parameters

      • event: string | symbol

        The event name.

      Returns Function[]

    • Remove the listeners of a given event.

      Parameters

      • event: string | symbol

        The event name.

      • Optionalfn: Function

        Only remove the listeners that match this function.

      • Optionalcontext: any

        Only remove the listeners that have this context.

      • Optionalonce: boolean

        Only remove one-time listeners.

      Returns this

    • Add a listener for a given event.

      Parameters

      • event: string | symbol

        The event name.

      • fn: Function

        The listener function.

      • Optionalcontext: any

        The context to invoke the listener with. Default this.

      Returns this

    • Add a one-time listener for a given event.

      Parameters

      • event: string | symbol

        The event name.

      • fn: Function

        The listener function.

      • Optionalcontext: any

        The context to invoke the listener with. Default this.

      Returns this

    • Start playing the given animation.

      Parameters

      • key: string

        The string-based key of the animation to play.

      • OptionalignoreIfPlaying: boolean

        If an animation is already playing then ignore this call. Default false.

      • OptionalstartFrame: number

        Optionally start the animation playing from this frame index. Default 0.

      Returns this

    • The Rope update loop.

      Parameters

      • time: number

        The current timestamp.

      • delta: number

        The delta time, in ms, elapsed since the last frame.

      Returns void

    • This callback is invoked when this Game Object is removed from a Scene.

      Can be overriden by custom Game Objects, but be aware of some Game Objects that will use this, such as Sprites, to removed themselves from the Update List.

      You can also listen for the REMOVED_FROM_SCENE event from this Game Object.

      Returns void

    • Removes this Game Object from the Display List it is currently on.

      A Game Object can only exist on one Display List at any given time, but may move freely removed and added back at a later stage.

      You can query which list it is on by looking at the Phaser.GameObjects.GameObject#displayList property.

      If a Game Object isn't on any Display List, it will not be rendered. If you just wish to temporarly disable it from rendering, consider using the setVisible method, instead.

      Returns this

    • Removes this Game Object from the Scene's Update List.

      When a Game Object is on the Update List, it will have its preUpdate method called every game frame. Calling this method will remove it from the list, preventing this.

      Removing a Game Object from the Update List will stop most internal functions working. For example, removing a Sprite from the Update List will prevent it from being able to run animations.

      Returns this

    • If this Game Object has previously been enabled for input, this will queue it for removal, causing it to no longer be interactive. The removal happens on the next game step, it is not immediate.

      The Interactive Object that was assigned to this Game Object will be destroyed, removed from the Input Manager and cleared from this Game Object.

      If you wish to re-enable this Game Object at a later date you will need to re-create its InteractiveObject by calling setInteractive again.

      If you wish to only temporarily stop an object from receiving input then use disableInteractive instead, as that toggles the interactive state, where-as this erases it completely.

      If you wish to resize a hit area, don't remove and then set it as being interactive. Instead, access the hitarea object directly and resize the shape being used. I.e.: sprite.input.hitArea.setSize(width, height) (assuming the shape is a Rectangle, which it is by default.)

      Parameters

      • OptionalresetCursor: boolean

        Should the currently active Input cursor, if any, be reset to the default cursor? Default false.

      Returns this

    • Remove the listeners of a given event.

      Parameters

      • event: string | symbol

        The event name.

      • Optionalfn: Function

        Only remove the listeners that match this function.

      • Optionalcontext: any

        Only remove the listeners that have this context.

      • Optionalonce: boolean

        Only remove one-time listeners.

      Returns this

    • The built-in Rope vertices debug rendering method.

      See Rope.setDebug for more details.

      Parameters

      • src: GameObjects.Rope

        The Rope object being rendered.

      • meshLength: number

        The number of vertices in the mesh.

      • verts: number[]

        An array of translated vertex coordinates.

      Returns void

    • Run a step in the render process. This is called automatically by the Render module.

      In most cases, it just runs the renderWebGL function.

      When _renderSteps has more than one entry, such as when Filters are enabled for this object, it allows those processes to defer renderWebGL and otherwise manage the flow of rendering.

      Parameters

      • renderer: WebGLRenderer

        The WebGL Renderer instance to render with.

      • gameObject: GameObject

        The Game Object being rendered.

      • drawingContext: DrawingContext

        The current drawing context.

      • OptionalparentMatrix: TransformMatrix

        The parent matrix of the Game Object, if it has one.

      • OptionalrenderStep: number

        Which step of the rendering process should be run? Default 0.

      • OptionaldisplayList: GameObject[]

        The display list which is currently being rendered. If not provided, it will be created with the Game Object.

      • OptionaldisplayListIndex: number

        The index of the Game Object within the display list. Default 0.

      Returns void

    • Resets the horizontal and vertical flipped state of this Game Object back to their default un-flipped state.

      Returns this

    • Resizes all of the internal arrays: vertices, uv, colors and alphas to the new given Rope segment total.

      Parameters

      • newSize: number

        The amount of segments to split the Rope in to.

      Returns this

    • Move this Game Object so that it appears above the given Game Object.

      This means it will render immediately after the other object in the display list.

      Both objects must belong to the same display list, or parent container.

      This method does not change this Game Objects depth value, it simply alters its list position.

      Parameters

      • gameObject: GameObject

        The Game Object that this Game Object will be moved to be above.

      Returns this

    • Sets the active property of this Game Object and returns this Game Object for further chaining. A Game Object with its active property set to true will be updated by the Scenes UpdateList.

      Parameters

      • value: boolean

        True if this Game Object should be set as active, false if not.

      Returns this

    • Set the Alpha level of this Game Object. The alpha controls the opacity of the Game Object as it renders. Alpha values are provided as a float between 0, fully transparent, and 1, fully opaque.

      Parameters

      • Optionalvalue: number

        The alpha value applied across the whole Game Object. Default 1.

      Returns this

    • Set the alpha values used by the Rope during rendering.

      You can provide the values in a number of ways:

      1. One single numeric value: setAlphas(0.5) - This will set a single alpha for the whole Rope.
      2. Two numeric value: setAlphas(1, 0.5) - This will set a 'top' and 'bottom' alpha value across the whole Rope.
      3. An array of values: setAlphas([ 1, 0.5, 0.2 ])

      If you provide an array of values and the array has exactly the same number of values as points in the Rope, it will use each alpha value per rope segment.

      If the provided array has a different number of values than points then it will use the values in order, from the first Rope segment and on, until it runs out of values. This allows you to control the alpha values at all vertices in the Rope.

      Note this method is called setAlphas (plural) and not setAlpha.

      Parameters

      • Optionalalphas: number | number[]

        Either a single alpha value, or an array of values. If nothing is provided alpha is reset to 1.

      • OptionalbottomAlpha: number

        An optional bottom alpha value. See the method description for details.

      Returns this

    • Sets the angle of this Game Object.

      Parameters

      • Optionaldegrees: number

        The rotation of this Game Object, in degrees. Default 0.

      Returns this

    • Move this Game Object so that it appears below the given Game Object.

      This means it will render immediately under the other object in the display list.

      Both objects must belong to the same display list, or parent container.

      This method does not change this Game Objects depth value, it simply alters its list position.

      Parameters

      • gameObject: GameObject

        The Game Object that this Game Object will be moved to be below.

      Returns this

    • Sets the Blend Mode being used by this Game Object.

      This can be a const, such as Phaser.BlendModes.SCREEN, or an integer, such as 4 (for Overlay)

      Under WebGL only the following Blend Modes are available:

      • NORMAL
      • ADD
      • MULTIPLY
      • SCREEN
      • ERASE (only works when rendering to a framebuffer, like a Render Texture)

      Canvas has more available depending on browser support.

      You can also create your own custom Blend Modes in WebGL.

      Blend modes have different effects under Canvas and WebGL, and from browser to browser, depending on support. Blend Modes also cause a WebGL batch flush should it encounter a new blend mode. For these reasons try to be careful about the construction of your Scene and the frequency in which blend modes are used.

      Parameters

      • value: string | number | BlendModes

        The BlendMode value. Either a string, a CONST or a number.

      Returns this

    • Set the color values used by the Rope during rendering.

      Colors are used to control the level of tint applied across the Rope texture.

      You can provide the values in a number of ways:

      • One single numeric value: setColors(0xff0000) - This will set a single color tint for the whole Rope.
      • An array of values: setColors([ 0xff0000, 0x00ff00, 0x0000ff ])

      If you provide an array of values and the array has exactly the same number of values as points in the Rope, it will use each color per rope segment.

      If the provided array has a different number of values than points then it will use the values in order, from the first Rope segment and on, until it runs out of values. This allows you to control the color values at all vertices in the Rope.

      Parameters

      • Optionalcolors: number | number[]

        Either a single color value, or an array of values. If nothing is provided color is reset to 0xffffff.

      Returns this

    • Allows you to store a key value pair within this Game Objects Data Manager.

      If the Game Object has not been enabled for data (via setDataEnabled) then it will be enabled before setting the value.

      If the key doesn't already exist in the Data Manager then it is created.

      sprite.setData('name', 'Red Gem Stone');
      

      You can also pass in an object of key value pairs as the first argument:

      sprite.setData({ name: 'Red Gem Stone', level: 2, owner: 'Link', gold: 50 });
      

      To get a value back again you can call getData:

      sprite.getData('gold');
      

      Or you can access the value directly via the values property, where it works like any other variable:

      sprite.data.values.gold += 50;
      

      When the value is first set, a setdata event is emitted from this Game Object.

      If the key already exists, a changedata event is emitted instead, along an event named after the key. For example, if you updated an existing key called PlayerLives then it would emit the event changedata-PlayerLives. These events will be emitted regardless if you use this method to set the value, or the direct values setter.

      Please note that the data keys are case-sensitive and must be valid JavaScript Object property strings. This means the keys gold and Gold are treated as two unique values within the Data Manager.

      Type Parameters

      • T extends unknown

      Parameters

      • key: string | T

        The key to set the value for. Or an object of key value pairs. If an object the data argument is ignored.

      • Optionaldata: any

        The value to set for the given key. If an object is provided as the key this argument is ignored.

      Returns this

    • This method enables rendering of the Rope vertices to the given Graphics instance.

      If you enable this feature, you must call Graphics.clear() in your Scene update, otherwise the Graphics instance you provide to debug will fill-up with draw calls, eventually crashing the browser. This is not done automatically to allow you to debug draw multiple Rope objects to a single Graphics instance.

      The Rope class has a built-in debug rendering callback Rope.renderDebugVerts, however you can also provide your own callback to be used instead. Do this by setting the callback parameter.

      The callback is invoked once per render and sent the following parameters:

      callback(src, meshLength, verts)

      src is the Rope instance being debugged. meshLength is the number of mesh vertices in total. verts is an array of the translated vertex coordinates.

      If using your own callback you do not have to provide a Graphics instance to this method.

      To disable debug rendering, to either your own callback or the built-in one, call this method with no arguments.

      Parameters

      • Optionalgraphic: GameObjects.Graphics

        The Graphic instance to render to if using the built-in callback.

      • Optionalcallback: Function

        The callback to invoke during debug render. Leave as undefined to use the built-in callback.

      Returns this

    • The depth of this Game Object within the Scene.

      The depth is also known as the 'z-index' in some environments, and allows you to change the rendering order of Game Objects, without actually moving their position in the display list.

      The default depth is zero. A Game Object with a higher depth value will always render in front of one with a lower value.

      Setting the depth will queue a depth sort event within the Scene.

      Parameters

      • value: number

        The depth of this Game Object. Ensure this value is only ever a number data-type.

      Returns this

    • Flags this Rope as being dirty. A dirty rope will recalculate all of its vertices data the next time it renders. You should set this rope as dirty if you update the points array directly.

      Returns this

    • Sets the display size of this Game Object.

      Calling this will adjust the scale.

      Parameters

      • width: number

        The width of this Game Object.

      • height: number

        The height of this Game Object.

      Returns this

    • Set whether filters should be updated every frame. Sets the filtersAutoFocus property.

      Parameters

      • value: boolean

        Whether filters should be updated every frame.

      Returns this

    • Set whether the filters should focus on the context. Sets the filtersFocusContext property.

      Parameters

      • value: boolean

        Whether the filters should focus on the context.

      Returns this

    • Set whether the filters should always draw to a framebuffer. Sets the filtersForceComposite property.

      Parameters

      • value: boolean

        Whether the object should always draw to a framebuffer, even if there are no active filters.

      Returns this

    • Set the base size of the filter camera. This is the size of the texture that internal filters will be drawn to. External filters are drawn to the size of the context (usually the game canvas).

      This is typically the size of the GameObject. It is set automatically when the Game Object is rendered and filtersAutoFocus is enabled. Turn off auto focus to set it manually.

      Technically, larger framebuffers may be used to provide padding. This is the size of the final framebuffer used for "internal" rendering.

      Parameters

      • width: number

        Base width of the filter texture.

      • height: number

        Base height of the filter texture.

      Returns this

    • Sets the horizontal and vertical flipped state of this Game Object.

      A Game Object that is flipped will render inversed on the flipped axis. Flipping always takes place from the middle of the texture and does not impact the scale value. If this Game Object has a physics body, it will not change the body. This is a rendering toggle only.

      Parameters

      • x: boolean

        The horizontal flipped state. false for no flip, or true to be flipped.

      • y: boolean

        The horizontal flipped state. false for no flip, or true to be flipped.

      Returns this

    • Sets the horizontal flipped state of this Game Object.

      A Game Object that is flipped horizontally will render inversed on the horizontal axis. Flipping always takes place from the middle of the texture and does not impact the scale value. If this Game Object has a physics body, it will not change the body. This is a rendering toggle only.

      Parameters

      • value: boolean

        The flipped state. false for no flip, or true to be flipped.

      Returns this

    • Sets the vertical flipped state of this Game Object.

      Parameters

      • value: boolean

        The flipped state. false for no flip, or true to be flipped.

      Returns this

    • Sets the frame this Game Object will use to render with.

      If you pass a string or index then the Frame has to belong to the current Texture being used by this Game Object.

      If you pass a Frame instance, then the Texture being used by this Game Object will also be updated.

      Calling setFrame will modify the width and height properties of your Game Object.

      It will also change the origin if the Frame has a custom pivot point, as exported from packages like Texture Packer.

      Parameters

      • frame: string | number | Frame

        The name or index of the frame within the Texture, or a Frame instance.

      • OptionalupdateSize: boolean

        Should this call adjust the size of the Game Object? Default true.

      • OptionalupdateOrigin: boolean

        Should this call adjust the origin of the Game Object? Default true.

      Returns this

    • Sets the alignment of the points in this Rope to be horizontal, in a strip format.

      Calling this method will reset this Rope. The current points, vertices, colors and alpha values will be reset to thoes values given as parameters.

      Parameters

      • Optionalpoints: number | Vector2Like[]

        An array containing the vertices data for this Rope, or a number that indicates how many segments to split the texture frame into. If none is provided the current points length is used.

      • Optionalcolors: number | number[]

        Either a single color value, or an array of values.

      • Optionalalphas: number | number[]

        Either a single alpha value, or an array of values.

      Returns this

    • Pass this Game Object to the Input Manager to enable it for Input.

      Input works by using hit areas, these are nearly always geometric shapes, such as rectangles or circles, that act as the hit area for the Game Object. However, you can provide your own hit area shape and callback, should you wish to handle some more advanced input detection.

      If no arguments are provided it will try and create a rectangle hit area based on the texture frame the Game Object is using. If this isn't a texture-bound object, such as a Graphics or BitmapText object, this will fail, and you'll need to provide a specific shape for it to use.

      You can also provide an Input Configuration Object as the only argument to this method.

      Parameters

      • OptionalhitArea: any

        Either an input configuration object, or a geometric shape that defines the hit area for the Game Object. If not given it will try to create a Rectangle based on the texture frame.

      • Optionalcallback: HitAreaCallback

        The callback that determines if the pointer is within the Hit Area shape or not. If you provide a shape you must also provide a callback.

      • OptionaldropZone: boolean

        Should this Game Object be treated as a drop zone target? Default false.

      Returns this

    • Sets the mask that this Game Object will use to render with.

      The mask must have been previously created and must be a GeometryMask. This only works in the Canvas Renderer. In WebGL, use a Mask filter instead (see Phaser.GameObjects.Components.FilterList#addMask).

      If a mask is already set on this Game Object it will be immediately replaced.

      Masks are positioned in global space and are not relative to the Game Object to which they are applied. The reason for this is that multiple Game Objects can all share the same mask.

      Masks have no impact on physics or input detection. They are purely a rendering component that allows you to limit what is visible during the render pass.

      Parameters

      • mask: GeometryMask

        The mask this Game Object will use when rendering.

      Returns this

    • Sets the name property of this Game Object and returns this Game Object for further chaining. The name property is not populated by Phaser and is presented for your own use.

      Parameters

      • value: string

        The name to be given to this Game Object.

      Returns this

    • Sets the points used by this Rope.

      The points should be provided as an array of Vector2, or vector2-like objects (i.e. those with public x/y properties).

      Each point corresponds to one segment of the Rope. The more points in the array, the more segments the rope has.

      Point coordinates are given in local-space, not world-space, and are directly related to the size of the texture this Rope object is using.

      For example, a Rope using a 512 px wide texture, split into 4 segments (128px each) would use the following points:

      rope.setPoints([
      { x: 0, y: 0 },
      { x: 128, y: 0 },
      { x: 256, y: 0 },
      { x: 384, y: 0 }
      ]);

      Or, you can provide an integer to do the same thing:

      rope.setPoints(4);
      

      Which will divide the Rope into 4 equally sized segments based on the frame width.

      Note that calling this method with a different number of points than the Rope has currently will reset the color and alpha values, unless you provide them as arguments to this method.

      Parameters

      • Optionalpoints: number | Vector2Like[]

        An array containing the vertices data for this Rope, or a number that indicates how many segments to split the texture frame into. If none is provided a simple quad is created. Default 2.

      • Optionalcolors: number | number[]

        Either a single color value, or an array of values.

      • Optionalalphas: number | number[]

        Either a single alpha value, or an array of values.

      Returns this

    • Sets the position of this Game Object.

      Parameters

      • Optionalx: number

        The x position of this Game Object. Default 0.

      • Optionaly: number

        The y position of this Game Object. If not set it will use the x value. Default x.

      • Optionalz: number

        The z position of this Game Object. Default 0.

      • Optionalw: number

        The w position of this Game Object. Default 0.

      Returns this

    • Sets the position of this Game Object to be a random position within the confines of the given area.

      If no area is specified a random position between 0 x 0 and the game width x height is used instead.

      The position does not factor in the size of this Game Object, meaning that only the origin is guaranteed to be within the area.

      Parameters

      • Optionalx: number

        The x position of the top-left of the random area. Default 0.

      • Optionaly: number

        The y position of the top-left of the random area. Default 0.

      • Optionalwidth: number

        The width of the random area.

      • Optionalheight: number

        The height of the random area.

      Returns this

    • Set whether the filters should be rendered. Sets the renderFilters property.

      Parameters

      • value: boolean

        Whether the filters should be rendered.

      Returns this

    • Adds an entry to the renderNodeData object of this game object.

      If key is not set, it is created. If it is set, it is updated.

      If value is undefined and key exists, the key is removed.

      Parameters

      • renderNode: string | RenderNode

        The render node to set the data for. If a string, it should be the name of the render node.

      • key: string

        The key of the property to set.

      • value: any

        The value to set the property to.

      Returns this

    • Sets the RenderNode for a given role.

      Also sets the relevant render node data object, if specified.

      If the node cannot be set, no changes are made.

      Parameters

      • key: string

        The key of the role to set the render node for.

      • renderNode: string | RenderNode

        The render node to set on this Game Object. Either a string, or a RenderNode instance. If null, the render node is removed, along with its data.

      • OptionalrenderNodeData: object

        An object to store render node specific data in, to be read by the render nodes this Game Object uses.

      • OptionalcopyData: boolean

        Should the data be copied from the renderNodeData object? Default false.

      Returns this

    • Sets the rotation of this Game Object.

      Parameters

      • Optionalradians: number

        The rotation of this Game Object, in radians. Default 0.

      Returns this

    • Sets the scale of this Game Object.

      Parameters

      • Optionalx: number

        The horizontal scale of this Game Object. Default 1.

      • Optionaly: number

        The vertical scale of this Game Object. If not set it will use the x value. Default x.

      Returns this

    • Sets the scroll factor of this Game Object.

      The scroll factor controls the influence of the movement of a Camera upon this Game Object.

      When a camera scrolls it will change the location at which this Game Object is rendered on-screen. It does not change the Game Objects actual position values.

      A value of 1 means it will move exactly in sync with a camera. A value of 0 means it will not move at all, even if the camera moves. Other values control the degree to which the camera movement is mapped to this Game Object.

      Please be aware that scroll factor values other than 1 are not taken in to consideration when calculating physics collisions. Bodies always collide based on their world position, but changing the scroll factor is a visual adjustment to where the textures are rendered, which can offset them from physics bodies if not accounted for in your code.

      Parameters

      • x: number

        The horizontal scroll factor of this Game Object.

      • Optionaly: number

        The vertical scroll factor of this Game Object. If not set it will use the x value. Default x.

      Returns this

    • Sets the internal size of this Game Object, as used for frame or physics body creation.

      This will not change the size that the Game Object is rendered in-game. For that you need to either set the scale of the Game Object (setScale) or call the setDisplaySize method, which is the same thing as changing the scale but allows you to do so by giving pixel values.

      If you have enabled this Game Object for input, changing the size will not change the size of the hit area. To do this you should adjust the input.hitArea object directly.

      Parameters

      • width: number

        The width of this Game Object.

      • height: number

        The height of this Game Object.

      Returns this

    • Sets the size of this Game Object to be that of the given Frame.

      This will not change the size that the Game Object is rendered in-game. For that you need to either set the scale of the Game Object (setScale) or call the setDisplaySize method, which is the same thing as changing the scale but allows you to do so by giving pixel values.

      If you have enabled this Game Object for input, changing the size will not change the size of the hit area. To do this you should adjust the input.hitArea object directly.

      Parameters

      • Optionalframe: boolean | Frame

        The frame to base the size of this Game Object on.

      Returns this

    • Sets the current state of this Game Object.

      Phaser itself will never modify the State of a Game Object, although plugins may do so.

      For example, a Game Object could change from a state of 'moving', to 'attacking', to 'dead'. The state value should typically be an integer (ideally mapped to a constant in your game code), but could also be a string. It is recommended to keep it light and simple. If you need to store complex data about your Game Object, look at using the Data Component instead.

      Parameters

      • value: string | number

        The state of the Game Object.

      Returns this

    • Sets the texture and frame this Game Object will use to render with.

      Textures are referenced by their string-based keys, as stored in the Texture Manager.

      Calling this method will modify the width and height properties of your Game Object.

      It will also change the origin if the Frame has a custom pivot point, as exported from packages like Texture Packer.

      Parameters

      • key: string | Textures.Texture

        The key of the texture to be used, as stored in the Texture Manager, or a Texture instance.

      • Optionalframe: string | number

        The name or index of the frame within the Texture.

      • OptionalupdateSize: boolean

        Should this call adjust the size of the Game Object? Default true.

      • OptionalupdateOrigin: boolean

        Should this call change the origin of the Game Object? Default true.

      Returns this

    • Sets the tint fill mode.

      Mode 0 (false) is an additive tint, the default, which blends the vertices colors with the texture. This mode respects the texture alpha.

      Mode 1 (true) is a fill tint. Unlike an additive tint, a fill-tint literally replaces the pixel colors from the texture with those in the tint. You can use this for effects such as making a player flash 'white' if hit by something. This mode respects the texture alpha.

      See the setColors method for details of how to color each of the vertices.

      Parameters

      • Optionalvalue: boolean

        Set to false for an Additive tint or true fill tint with alpha. Default false.

      Returns this

    • Sets this Game Object to the back of the display list, or the back of its parent container.

      Being at the back means it will render below everything else.

      This method does not change this Game Objects depth value, it simply alters its list position.

      Returns this

    • Sets this Game Object to be at the top of the display list, or the top of its parent container.

      Being at the top means it will render on-top of everything else.

      This method does not change this Game Objects depth value, it simply alters its list position.

      Returns this

    • Sets the vertex round mode of this Game Object. This is used by the WebGL Renderer to determine how to round the vertex positions.

      Parameters

      • mode: string

        The vertex round mode to set. Can be 'off', 'safe', 'safeAuto', 'full' or 'fullAuto'.

      Returns this

    • Sets the alignment of the points in this Rope to be vertical, in a column format.

      Calling this method will reset this Rope. The current points, vertices, colors and alpha values will be reset to thoes values given as parameters.

      Parameters

      • Optionalpoints: number | Vector2Like[]

        An array containing the vertices data for this Rope, or a number that indicates how many segments to split the texture frame into. If none is provided the current points length is used.

      • Optionalcolors: number | number[]

        Either a single color value, or an array of values.

      • Optionalalphas: number | number[]

        Either a single alpha value, or an array of values.

      Returns this

    • Sets the visibility of this Game Object.

      An invisible Game Object will skip rendering, but will still process update logic.

      Parameters

      • value: boolean

        The visible state of the Game Object.

      Returns this

    • Sets the w position of this Game Object.

      Parameters

      • Optionalvalue: number

        The w position of this Game Object. Default 0.

      Returns this

    • Sets the x position of this Game Object.

      Parameters

      • Optionalvalue: number

        The x position of this Game Object. Default 0.

      Returns this

    • Sets the y position of this Game Object.

      Parameters

      • Optionalvalue: number

        The y position of this Game Object. Default 0.

      Returns this

    • Toggle a boolean value for the given key within this Game Objects Data Manager. If the key doesn't already exist in the Data Manager then it is toggled from false.

      If the Game Object has not been enabled for data (via setDataEnabled) then it will be enabled before setting the value.

      If the key doesn't already exist in the Data Manager then it is created.

      When the value is first set, a setdata event is emitted from this Game Object.

      Parameters

      • key: string

        The key to toggle the value for.

      Returns this

    • Toggles the horizontal flipped state of this Game Object.

      A Game Object that is flipped horizontally will render inversed on the horizontal axis. Flipping always takes place from the middle of the texture and does not impact the scale value. If this Game Object has a physics body, it will not change the body. This is a rendering toggle only.

      Returns this

    • To be overridden by custom GameObjects. Allows base objects to be used in a Pool.

      Parameters

      • ...args: any[]

        args

      Returns void

    • Updates all of the UVs based on the Rope.points and flipX and flipY settings.

      Returns this

    • Updates the vertices based on the Rope points.

      This method is called automatically during rendering if Rope.dirty is true, which is set by the setPoints and setDirty methods. You should flag the Rope as being dirty if you modify the Rope points directly.

      Returns this

    • Checks if this Game Object should round its vertices, based on the given Camera and the vertexRoundMode of this Game Object. This is used by the WebGL Renderer to determine how to round the vertex positions.

      You can override this method in your own custom Game Object classes to provide custom logic for vertex rounding.

      Parameters

      • camera: Cameras.Scene2D.Camera

        The Camera to check against this Game Object.

      • onlyTranslated: boolean

        If true, the object is only translated, not scaled or rotated.

      Returns boolean